Auxiliary material for Paper 2010TC002668

Evolution of the Adria-Europe plate boundary in the northern Dinarides: From continentcontinent collision to back-arc extension

Kamil Ustaszewski Institute of Geology and Paleontology, University of Basel, Basel, Switzerland

Now at Lithosphere Dynamics, GFZ German Research Centre for Geosciences, Potsdam, Germany

Alexandre Kounov Institute of Geology and Paleontology, University of Basel, Basel, Switzerland

Stefan M. Schmid Department of Earth Sciences, Freie Universitaet Berlin, Berlin, Germany

Urs Schaltegger Department of Mineralogy, University of Geneva, Geneva, Switzerland

Erwin Krenn, Division of Mineralogy, Department of Materials Science and Physics, University of Salzburg, Salzburg, Austria

Wolfgang Frank Central European Argon Laboratory, Geological Institute, Slovak Academy of Sciences, Bratislava, Slovakia

Institute for Geology, University of Vienna, Vienna, Austria

Bernhard Fuegenschuh, Geological-Paleontological Institute, Innsbruck, Austria

Ustaszewski, K., A. Kounov, S. M. Schmid, U. Schaltegger, E. Krenn, W. Frank, and B. Fuegenschuh (2010), Evolution of the Adria-Europe plate boundary in the northern Dinarides: From continent-continent collision to backarc extension, Tectonics, 29, XXXXXX, doi:10.1029/2010TC002668.

Introduction

This data set contains supplemental descriptions of analytical techniques, figures and data sets accompanying the paper 2010TC002668. Text S1 describes analytical techniques involved in geochronological dating (section S1), details on the mineral chemistry of the dated minerals (section S2), as well as a description of the apatite fission track modeling technique (section S3). The figures and data sets are referred to in the main manuscript text.

1. 2010tc002668-txts01.doc Analytical techniques, chemistry of minerals analyzed by 40Ar/39Ar dating, and apatite fission track thermal modeling.

1.1. Section S1: analytical techniques

- U/Pb dating

- 40Ar/39Ar mineral dating

- Zircon and Apatite fission-track dating
- References
- 1.2. Section S2: Chemistry of minerals analyzed by 40Ar/39Ar dating
- 1.3. Section S3: Apatite fission track thermal modeling

2. 2010tc002668-fs01.eps

Results of phase equilibrium modeling ('pseudosection modeling') for metapelitic sample UK06-62 from the Motajica Inselberg, calculated using Perple_X [Connolly, 2005; version 7]. Stable assemblages were constrained from the whole-rock composition (Data Set S2) in the system Na2O-CaO-K2O-FeO-MgO-MnO-Al2O3-SiO2-H2O-CO2 with water in excess (saturated phase). With reference to the P-T range under study and for the lack of secondary CO2-bearing phases, a water activity of 1 was assumed. No substantial changes of the garnet stability field will occur by using a water activity of 0.9. Shown in red are the garnet (GRT) and Staurolite (St) stability field. Note that the temperature axis is labeled in Kelvin. The results indicate P-T conditions between about 5 and 8 kbar and 560 to 640 degrees C for the parageneses observed in the studied sample. These results are fairly compatible with our P-T estimated described in the main manuscript. Compare with Fig. 12 in the main manuscript.

3. 2010tc002668-fs02.eps

Concordia diagrams showing the results of single zircon and monazite analyses from Prosara (a) and Motajica samples (b). Individual analyses are shown as 2Lm error ellipses. Given ages are weighted mean 206Pb/238U ages in case of zircons and 207Pb/235U ages in case of monazite. Grey shading indicates the uncertainties of the decay constants. See Figures 6 and 7 in the main manuscript for sample locations.

4. 2010tc002668-fs03.eps

Backscattered electron images of amphiboles from Motajica analyzed by the 40Ar/39Ar stepwise heating technique. Numbered points correspond to the mineral analyses in Data Set S5. See Figure 7d for location.

5. 2010tc002668-fs04.eps

Backscattered electron images of sericite aggregates analyzed by the 40Ar/39Ar stepwise heating technique. (a.) The sericite aggregates occur as mm-thin layers within a greenschist facies calcite marble from Prosara (sample UK06-58, see Figure 6a for location). The sericites define an s1 foliation, which is crenulated during the D2 deformation event. Cc = calcite, Ser = sericite, Mt = magnetite. (b.) At greater magnification, the sericite aggregates are identified as intergrowths of muscovite (Ms) and chlorite (Chl) by different shades of gray.

6. 2010tc002668-fs05.eps

Frequency distribution of the zircon single grain ages from the analyzed Maastrichtian samples from the Motajica inselberg. Also shown are the depositional age range of the Maastrichtian flysch, magmatic activities in the area and the Zr FT age obtained on a Paleozoic granite of the

Papuk-Psunj Mountain. Refer to section 5.3 in the main manuscript. See Figure 7 for sample locations.

7. 2010tc002668-ds01.doc

Compilation of biostratigraphic ages reported for the Cretaceous to Paleogene formations in the Sava Zone inselbergs, sorted from north to south.

8. 2010tc002668-ds02.doc
Bulk and mineral composition of an amphibolite facies metapelite (sample UK06-62) from Motajica used for thermobarometric calculations. See Figure 7b for sample location.

9. 2010tc002668-ds03.doc U-Pb isotopic data of analyzed zircons and monazites from Prosara and Motajica igneous rocks.

10. 2010tc002668-ds04.doc

40Ar/39Ar analytical data for incremental heating experiments on mineral concentrates and fine fractions from Prosara and Motajica.

11. 2010tc002668-ds05.doc

Electron-microprobe analyses of amphiboles dated by the 40Ar/39Ar stepwise heating technique.

12. 2010tc002668-ds06.doc

Summary of geochronological data from the Sava Zone used for constraining its thermal evolution. The data are separated into a footwall (italics) and hangingwall unit with respect to the Motajica detachment. All data except those indicated by superscripts were derived in this study. Compare with Figure 15 in the main manuscript.

Supplementary material for electronic supplement to: Ustaszewski K. et al., Tectonics, doi:10.1029/2010TC002668, 2010

Section S1: analytical techniques

U-Pb dating

Zircons and monazites were prepared by standard mineral separation techniques (crushing, milling, concentration via Wilfley table, magnetic separation and heavy liquid separation in methylene iodide (density > 3.1 gcm^{-3})). Suitable grains were then handpicked in ethanol under a binocular microscope. In order to minimize effects of secondary lead-loss in zircons, the chemical abrasion "CA-TIMS" technique, involving high-temperature annealing followed by a subsequent HF leaching step [*Mattinson*, 2005] was applied. The monazite preparation followed procedures described in *Schaltegger et al.* [2005]. Isotopic analyses were performed at the Department of Earth Sciences at the University of Geneva. The analytical techniques are described in *Ovtcharova et al.* [2006] in more detail. Calculation of ²⁰⁶Pb/²³⁵U ages was done with the Isoplot/Ex v.3 program [*Ludwig*, 2005].

⁴⁰Ar/³⁹Ar mineral dating

<u>Mineral separation</u>: The ⁴⁰Ar/³⁹Ar incremental heating technique was applied to amphibole concentrates, sericite aggregates and fine fractions, using the facilities of the Central European Argon-Laboratory (CEAL) at the Geological Institute of the Slovak Academy of Science in Bratislava. Amphibole concentrates and sericite aggregates have been prepared by standard mineral separation techniques (crushing, milling, sieving, magnetic separation and handpicking under a binocular microscope). Fine fractions in three different grain size ranges (<2, 2–6 and 6–12 μ m) have been prepared from calcite marbles following decarbonation with acetic acid. Samples selected for fine fraction separation were only jawcrushed and sieved without milling, in order to minimize the production of an additional fine fraction during preparation. Fine fractions were separated by settling from a suspension in Atterberg cylinders applying Stoke's Law. Mineral phases of all analyzed fine fractions were determined by XRD on a Siemens D5000 at the Institute of Mineralogy & Petrography of the University Basel. In order to avoid contribution of low-K phases (quartz, chlorite, kaolinite and smectite) only very illite-rich fine fractions were selected for dating. Prior to dating, amphibole chemistry was determined with emphasis on K₂O content (section S2).

<u>Irradiation and gas extraction</u>: Mineral concentrates were enclosed in high purity quartz vials and irradiated for 4–6 h at the 9 MW ASTRA reactor at the Austrian Research

Centre Seibersdorf. After a cooling period of at least 3 weeks, the samples were filled in annealed (low-blank) cylindrical tantalum capsules. Two Ar-extraction lines were used during this study, a manually operated and a fully automatic extraction and purification line. Argon was released at progressively higher temperatures, ranging between 590 and 1250 °C and between 750 and 1300 °C for the white mica and amphibole concentrates, respectively. During the analysis only one tantalum capsule was in the heating position. The heating time for the low temperature steps was typically 10 min and was continuously lowered to 3 min for the high temperature steps. Cleaning of the gas was done by a combination of cold traps, Tisponge and SAE-getters. A collection of the argon with a cold trap before sample inlet was not performed. Two thirds of the gas was introduced into a VG-5400 gas mass spectrometer; the rest was pumped away from the extraction line. Isotopic ratios were determined for a measuring period of 10 min, with the local ratios extrapolated back to the time of sample inlet to determine the original isotopic composition. Ages were calculated after corrections for mass discrimination and radioactive decay, especially of ³⁷Ar, using formulas given by McDougall and Harrison [1999]. The specific production ratios of the interfering Ar isotopes at the ASTRA reactor of Seibersdorf are: $({}^{36}Ar/{}^{37}Ar)_{Ca}=0.0003$, $({}^{39}Ar/{}^{37}Ar)_{Ca}=0.00065$, $({}^{40}\text{Ar}/{}^{39}\text{Ar})_{\text{K}}=0.025$. The K/Ca ratio is determined from the ${}^{39}\text{Ar}/{}^{37}\text{Ar}$ ratio (calculated for the end of irradiation) using a conversion factor of 0.247. This factor was determined from a plagioclase with uniform and well known composition.

The ⁴⁰Ar line blank at 1000 °C is $2-5\times10-10$ cm³ STP and the ⁴⁰Ar/³⁶Ar ratio of the line blank is close to air composition. Determination of the background, blank corrections and careful checking of the peak positions were routinely performed. J-values were determined with internal laboratory standards, calibrated by international standards including muscovite Bern 4M [*Burghele*, 1987], amphibole Mm1Hb [*Samson and Alexander*, 1987] and Fish Canyon sanidine [*Renne et al.*, 1994].

<u>Data analysis:</u> We use the plateau age definition of *Frank and Schlager* [2006]. A plateau age is defined if three or more contiguous heating steps with similar apparent K/Ca ratios, each representing >4 % of the total ³⁹Ar released and summing up to >30 % of the total quantity of ³⁹Ar released, coincide within ±1 % analytical uncertainty. We defined a so-called 'mean age' if three or more contiguous heating steps failed the criteria of a plateau age in terms of ±1 % analytical uncertainty, but which still gave similar ages within a variance of \leq 15 %. Total gas ages are calculated by integrating over all heating steps, but do not carry geological significance unless they coincide with the plateau ages within analytical

uncertainties. Errors of the calculated ages for the individual steps are given as 1σ . The 1σ errors of the plateau and total gas ages include an additional error of ± 0.4 % on the J-value.

The contribution of low-K phase impurities to the released ³⁹Ar was evaluated by inspecting the K/Ca ratio. Loss of ³⁹Ar through the recoil effect is quoted to often severely restrict the applicability of the ⁴⁰Ar/³⁹Ar dating technique in clay-size fractions [e.g. *Turner and Cadogan*, 1974; *Faure*, 1986; *McDougall and Harrison*, 1999]. However, *Dong et al.* [1995; 1997a, b] demonstrated how vacuum encapsulation prior to irradiation mitigated this effect, yielding geologically meaningful ages even on <2 µm fractions. *Frank and Schlager* [2006] also successfully demonstrated the applicability of this technique on small grain size fractions. We consider this technique a viable approach for dating fine fractions from sub-greenschist-facies and greenschist-facies pelites.

Zircon and Apatite fission-track dating

Whole rock samples were crushed and apatite and zircon grains were recovered by conventional heavy liquid and magnetic methods. Apatite grains were mounted in epoxy resin, polished and etched with 7% HNO₃ at 21 °C for 50 s. Zircon grains were etched in an eutectic mixture of KOH and NaOH at 220 °C for between 9 and 15 h. Irradiation was carried out at the OSU facility, Oregon State University Radiation Center, USA. Microscopic analysis was completed at Basel University using an optical microscope with a Kinetek computer-driven stage [*Dumitru*, 1995]. All ages were determined using the z approach [*Hurford and Green*, 1983] with a z value of 332 ± 7 for apatite (CN5 standard glass) and 122 ± 2 for zircon (CN1 standard glass) (Table 1, analyst: A. Kounov). They are reported as central ages [*Galbraith and Laslett*, 1993] with a 2 σ error (Table 1). The magnification used was x1250 for apatite and x1600 (dry objective) for zircon. Horizontal confined track lengths in apatite grains were measured at a magnification of x2500 in order to estimate the compositional influence on fission track annealing [*Carlson et al.*, 1999].

The temperatures at which fission tracks in apatite and zircon minerals partially anneal (i.e. partial isotopic resetting) are not sharply defined. A temperature range, known as partial annealing zone (PAZ), exists where partial track annealing occurs. The effective closure of the system lies within this zone and is dependent on the overall cooling rates and the kinetic properties of the minerals. The specific partial annealing zone for apatite lies between 60 °C and 110 °C [*Green and Duddy*, 1989; *Corrigan*, 1993], with one mean effective closure temperature constrained at 110±10 °C.

Unfortunately our knowledge of zircon annealing is not as advanced as that of apatite and wide-ranging values for the temperature bounds for the partial annealing zone of zircon have been published. *Yamada et al.* [1995] suggest temperature limits of \sim 390–170 °C, whereas *Tagami and Dumitru* [1996] and *Tagami et al.* [1998] suggested temperature limits of \sim 310–230 °C. Recently in his overview on the zircon fission track dating method *Tagami* [2005] reported temperature ranges for the closure temperature between \sim 300–200 °C. Accordingly we use a value of 250±50 °C for closure temperature with a partial annealing zone from 200 to 300 °C.

Section S2: Chemistry of minerals analyzed by ⁴⁰Ar/³⁹Ar dating

Amphiboles: The analyses were performed by Jürgen Konzett on a JEOL microprobe at the Institute of Mineralogy & Petrography at the University Innsbruck. Amphiboles from sample M120a show prograde-zoned Ca-amphiboles with greenschist-facies actinolithic cores (poor in Al, Na and Ti) and amphibolite-facies (Al-Na-Ti-rich) rims of Mg-hornblende (Figure S3a and b in the electronic supplement). Except for the Al-poor cores, all amphiboles have K₂O contents between 0.3 and 0.4 wt% (Data Set S5). Amphiboles in sample M129 show K₂O contents between c. 0.1 and 0.3 wt%. Sample M129 also shows strongly zoned Ca-amphiboles and, in addition, Fe-Mg-amphiboles (likely Cummingtonit). The latter occur as irregular inclusions and exsolution lamellae that appear brighter than the host mineral (Figure S3c). This suggests a coexistence of Ca- and Mg-Fe amphiboles rather than a mineral reaction.

Sericites: Sericites from sample UK06-58 (Figure S4 in the electronic supplement) dated in this study were analyzed in-situ within the calcite marbles by back-scattered electrons and energy-dispersive chemical analyses on a scanning electron microscope at GFZ Potsdam with the help of Helga Kemnitz. Detailed chemical analyses are available from the first author upon request.

Section S3: Apatite fission track thermal modeling

Fission tracks in apatites are formed continuously through time at an approximately uniform initial mean length of ~16.3 μ m [*Gleadow et al.*, 1986]. Upon heating, tracks gradually anneal and shorten to a length that is function of the time and maximum temperature to which the apatites were exposed. For example, tracks are completely annealed

at a temperature of 110 - 120 °C for a period of $10^5 - 10^6$ years [*Gleadow and Duddy*, 1981]. These annealing characteristics allow the generation of time-temperature paths by inverse modeling [e.g. *Gallagher*, 1995; *Ketcham et al.*, 2000]. As resolution of the AFT thermochronometer is limited to the temperature range of 60-110 °C [*Laslett et al.*, 1987], therefore the paths of the t-T envelope defined for the zones out of this range are not necessary representative for the real thermal evolution of a sample.

Modeling of the apatite age and track length distribution data was carried out with the program HeFTy [*Ketcham et al.*, 2000]. FT age, track-length distribution and etch pits diameters (Dpar) as well as user-defined time (t) - temperature (T) boxes, are used as input parameters. An inverse Monte Carlo algorithm with multikinetic annealing model [*Ketcham et al.*, 2007] was used to generate the time-temperature paths. The algorithm generates a large number of time-temperature paths, which are tested with respect to input data. The t-T paths are forced to pass through the time-temperature boxes (constraints). The fitting of the measured input data and modeled output data is statistically evaluated and characterized by value of the goodness of fit (GOF). A "good" result corresponds to value >0.5 whereas value of 0.05 or higher is considered to reflect an "acceptable" fit between modeled and measured data.

It is important to remember that the best thermal history obtained during this process is not necessarily the only possible. Other thermal histories may match the observed data similarly well and it is therefore imperative to consider as many other geological constraints as possible to determine the most likely path.

References

- Burghele, A. (1987), Propagation of error and choice of standard in the ⁴⁰Ar-³⁹Ar technique, *Chemical Geology*, *66*, 17-19.
- Carlson, D. W., R. A. Donelick, and R. A. Ketcham (1999), Variability of apatite fission-track annealing kinetics, I. Experimental results, *American Mineralogist*, *84*, 1213-1223.
- Corrigan, J. D. (1993), Apatite fission-track analysis of Oligocene strata in South Texas, U.S.A.: Testing annealing models, *Chemical Geology*, *104*, 227-249.
- Dong, H., C. M. Hall, and A. N. Halliday (1995), Mechanisms of argon retention in clays revealed by laser ⁴⁰Ar-³⁹Ar dating, *Science*, *267*, 355-359.
- Dong, H., C. M. Hall, A. N. Halliday, and D. R. Peacor (1997a), Laser ⁴⁰Ar-³⁹Ar dating of microgram-size illite samples and implications for thin section dating, *Geochimica et Cosmochimica Acta*, 61, 3803-3808.

Electronic supplement to: Ustaszewski K. et al., Tectonics, doi:10.1029/2010TC002668, 2010

- Dong, H., C. M. Hall, A. N. Halliday, D. R. Peacor, R. J. Merriman, and B. Roberts (1997b),
 ⁴⁰Ar-³⁹Ar illite dating of Late Caledonian (Acadian) metamorphism and cooling of K-bentonites and slates from the Welsh Basin, U.K., *Earth and Planetary Science Letters*, 150, 337-351.
- Dumitru, T. A. (1995), A new computer automated microscope stage system for fission track analysis, *Nuclear Tracks Radiation Measurements*, *21*, 575-580.
- Faure, G. (1986), *Principles of Isotope Geology*, 2nd ed., 589 pp., John Wiley & Sons, New York.
- Frank, W., and W. Schlager (2006), Jurassic strike slip versus subduction in the Eastern Alps, International Journal of Earth Sciences, 95, 431-450.
- Galbraith, R. F., and G. M. Laslett (1993), Statistical models for mixed fission-track ages, *Nuclear Tracks and Radiation Measurements*, 21, 459-470.
- Gallagher, K. (1995), Evolving temperature histories from apatite fission-track data, *Earth* and *Planetary Sciences Letters*, 136, 421-435.
- Gleadow, A. J. W., I. R. Duddy, P. F. Green, and K. A. Hegarty (1986), Fission track length in the apatite annealing zone and interpretation of mixed ages, *Earth and planetary Science Letters*, 78, 245-254.
- Gleadow, A. J. W., and I. R. Duddy (1981), A natural long-term track annealing experiment for apatite, *Nuclear Tracks and Radiation Measurements*, *5*, 169–174.
- Green, P. F., and I. R. Duddy (1989), Some comments on paleotemperature estimation from apatite fission track analysis, *Journal of Petroleum Geology*, *12*, 111-114.
- Hurford, A. J., and P. F. Green (1983), The zeta age calibration of fission-track dating, *Chemical Geology*, 41, 285-317.
- Ketcham, R., R. A. Donelick, and M. Donelick (2000), AFTSolve: A program for multikinetic modeling of apatite fission-track data, *Geological Materials Research*, *1*, 1-32.
- Ketcham, R. A., A. Carter, R. A. Donelick, J. Jocelyn Barbarand, and A. J. Hurford (2007), Improved modeling of fission-track annealing in apatite, *American Mineralogist*, 92, 799-810.
- Laslett, G. M., P. F. Green, I. R. Duddy, and A. J. W. Gleadow (1987), Thermal annealing of fission track in apatite, 2. A quantitative analysis, *Chemical Geology*, 65, 1-13.
- Ludwig, K. (2005), Isoplot A plotting and regression program for radiogenic isotope data, in USGS Open File report 91-445, edited, Boulder.

- Mattinson, J. M. (2005), Zircon U-Pb chemical abrasion ("CA-TIMS") method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages, *Chemical Geology*, 220, 47-66.
- McDougall, I., and T. M. Harrison (1999), *Geochronology and Thermochronology by the* ⁴⁰Ar/³⁹Ar method, 2nd ed., 269 pp., Oxford University Press, New York.
- Ovtcharova, M., H. Bucher, U. Schaltegger, T. Galfetti, A. Brayard, and J. Guex (2006), New Early to Middle Triassic U-Pb ages from South China: Calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery, *Earth and Planetary Science Letters*, 243, 463-475.
- Renne, P. R., A. L. Deino, R. C. Walter, B. D. Turrin, C. C. Swisher, T. A. Becker, G. H. Curtis, W. D. Sharp, and A. R. Jaouni (1994), Intercalibration of astronomical and radioisotopic time, *Geology*, 22, 783-786.
- Samson, S. D., and E. C. Alexander (1987), Calibration of the interlaboratory ⁴⁰Ar-³⁹Ar dating standard MMhb-1, *Chemical Geology*, *66*, 27-34.
- Schaltegger, U., T. Pettke, A. Audétat, E. Reusser, and C. A. Heinrich (2005), Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia)
 Part I: Crystallization of zircon and REE-phosphates over three million years—a geochemical and U–Pb geochronological study, *Chemical Geology*, 220, 215–235.
- Stacey, J. S., and J. D. Kramers (1975), Approximation of terrestrial lead isotope evolution by a two-stage model, *Earth and Planetary Science Letters*, *26*, 207-221.
- Tagami, T. (2005) Zircon Fission-Track Thermochronology and Applications to Fault Studies, *Reviews in Mineralogy and Geochemistry*, 58, 95-122.
- Tagami, T., and T. A. Dumitru (1996), Provenance and history of the Franciscan accretionary complex: Constraints from zircon fission track thermochronology, *Journal of Geophysical Research*, 101, 8345-8255.
- Tagami, T., R. F. Galbraith, R. Yamada, and G. M. Laslett (1998), Revised annealing kinetics of fission tracks in zircon and geological implications, in *Advances in Fission-Track Geochronology* edited by P. Van den Haute and F. de Corte, pp. 99-114, Kluwer Acadedmic Publishers, Dordrecht.
- Turner, G., and P. H. Cadogan (1974), Possible effects of ³⁹Ar recoil in ⁴⁰Ar-³⁹Ar dating, *Geochimica et Cosmochimica Acta*, *2, Supplement 5*, 1601-1615.
- Yamada, R., T. Tagami, S. Nishimura, and H. Ito (1995), Annealing kinetics of fission tracks in zircon: an experimental study, *Chemical Geology*, 122, 249-248.

Figures for electronic supplement

Figure S1: Results of phase equilibrium modeling ('pseudosection modeling') for metapelitic sample UK06-62 from the Motajica Inselberg, calculated using Perple_X [*Connolly*, 2005; version 7]. Stable assemblages were constrained from the whole-rock composition (Data Set S2) in the system Na2O–CaO–K2O–FeO–MgO–MnO–Al2O3–SiO2–H2O–CO2 with water in excess (saturated phase). With reference to the P-T range under study and for the lack of secondary CO2-bearing phases, a water activity of 1 was assumed. No substantial changes of the garnet stability field will occur by using a water activity of 0.9. Shown in red are the garnet (GRT) and Staurolite (St) stability field. Note that the temperature axis is labeled in Kelvin. The results indicate P-T conditions between about 5 and 8 kbar and 560 to 640 °C for the parageneses observed in the studied sample. These results are fairly compatible with our P-T estimated described in the main manuscript.

Figure S2: Concordia diagrams showing the results of single zircon and monazite analyses from Prosara (a) and Motajica samples (b). Individual analyses are shown as 2σ error ellipses. Given ages are weighted mean 206 Pb/ 238 U ages in case of zircons and 207 Pb/ 235 U ages in case of monazite. Grey shading indicates the uncertainties of the decay constants. See Figures 6 and 7 in the main manuscript for sample locations.

Figure S3: Back-scattered electron images of amphiboles from Motajica analyzed by the 40 Ar/ 39 Ar stepwise heating technique. Numbered points correspond to the mineral analyses in Data Set S5. See Figure 7d in the main manuscript for location.

Figure S4: Back-scattered electron images of sericite aggregates analyzed by the 40 Ar/ 39 Ar stepwise heating technique. (a.) The sericite aggregates occur as mm-thin layers within a greenschist-facies calcite marble from Prosara (sample UK06-58, see Figure 6a for location). The sericites define an s1 foliation, which is crenulated during the D2 deformation event. Cc = calcite, Ser = sericite, Mt = magnetite. (b.) At greater magnification, the sericite aggregates are identified as intergrowths of muscovite (Ms) and chlorite (Chl) by different shades of gray.

Figure S5: Frequency distribution of the zircon single grain ages from the analyzed

Maastrichtian samples from the Motajica inselberg. Also shown are the depositional age range of the Maastrichtian flysch, magmatic activities in the area and the Zr FT age obtained on a Palaeozoic granite of the Papuk-Psunj Mountain. Refer to section 5.3 in the main manuscript. See Figure 7 in the main manuscript for sample locations.

Data Sets for electronic supplement

Data Set S1: Compilation of biostratigraphic ages reported for the Cretaceous to Palaeogene formations in the Sava Zone inselbergs, sorted from north to south.

Data Set S2: Bulk and mineral composition of an amphibolite-facies metapelite (sample UK06-62) from Motajica used for thermobarometric calculations. See Figure 7b for sample location.

Data Set S3: U-Pb isotopic data of analyzed zircons and monazites from Prosara and Motajica igneous rocks.

Data Set S4: ⁴⁰Ar/³⁹Ar analytical data for incremental heating experiments on mineral concentrates and fine fractions from Prosara and Motajica.

Data Set S5: Electron-microprobe analyses of amphiboles dated by the ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ stepwise heating technique.

Data Set S6: Summary of geochronological data from the Sava Zone used for constraining its thermal evolution. The data are separated into a footwall (*italics*) and hangingwall unit with respect to the Motajica detachment. All data except those indicated by superscripts were derived in this study. Compare with Figure 15 in the main manuscript.

labeled fields:

- Pio/UP) Gt/UP) zo mu pa ab o
- 1 Bio(HP) Gt(HP) zo mu pa ab q H2O tbi
- 2 Bio(HP)Chl(HP)AbPl Gt(HP)zo mu q H2Obi
- 3 Bio(HP) hCrd AbPI and mu q H2O tbi
- 4 Bio(HP) hCrd AbPl sill mu q H2O tbi 5 Bio(HP) hCrd AbPl sill san q H2O tbi
- 6 Bio(HP) hCrd AbPl san q ilm H2O tbi
- 7 Bio(HP) hCrd AbPl san q ilm H2O

Fig. S2

Fig. S3

Fig. S4

Fig. S5

inselberg	map sheet ¹	mapped lithology ^{2, 3}	Locality ⁴	Lithology ⁵	fossils	Age assignment	Reference ⁶
Požeška Gora	Nova Kapela	"K2, 2+3"	Vrbovac Topolika Bukovac	Marls <u>Marly limestones</u> Sandstones Calcarenites conglomerates	Globotruncana lapparenti Globotruncana stuarti G. area G. cf. convexa	Turon-Senon	Šparica et al., 1980
Požeška Gora	Nova Kapela	?"K2, 2+3"	Nakop potok creek	limestones	Globotruncana lapparenti lapparenti (Brotzen)Globotruncana lapparenti tricarinata (Quereau)Globotruncana stuarti (De Lapparent)Globotruncana arca (Cushman)Globotruncana lapparenti bulloidesGl. sp. (cf. fornicata Plummer) Praeglobotruncana citae (Bolli) Heterohelicidae	"Upper Cretaceous, upper parts of the Senonian" = Late Campanian – Maastrichtian	Šparica et al., 1980 Pamić & Šparica 1983 M. Caron, pers. comm. July 2007
Prosara	Nova Gradiska	"GK2,3" "SmK2,3" "SqmK2,3" "ArK2,3"		Phyllites meta-arcoses sandstones micaschists Qu-schists argillo-schists	palynomorphs	Maastricht - Lower Paleocene	Šparica et al., 1984
Prosara	Kostajnica	"GK2,3" "SqmK2,3" "ArK2,3"		phyllites	microflora	Upper Cretaceous - Lower Paleocene	Jovanović and Magas, 1986
Motajica	Nova Kapela	"FK2,3" (and "ArK2,3"?)	Gladalica creek	argillo-phyllites metasandstones	palynomorphs: angiosperm pollen (conifers?)	Uppermost Cretaceous - Lowermost Palaeogene	Pantic and Jovanović, 1970

inselberg	map sheet ¹	mapped lithology ^{2, 3}	Locality ⁴	Lithology ⁵	fossils	Age assignment	Reference ⁶
Motajica	Nova Kapela	"FK2,3" "ArK2,3"		Arcoses phyllites	angiosperm pollen Siderolites calcitropoides Orbitoides sp. Rotaliidae Clypeorbis mamillata rudist fragments globotruncanae	Maastricht	Šparica et al., 1980
Motajica	Nova Kapela	"4K2,3"	Sitnes, Orljak	Sandstones Clays Argillites limestones, conglomerates	Orbitoides media Haplophragmoides sp.	Upper Cretaceous	Šparica et al., 1980
Kozara	Kostajnica	"Pc, E"	W of Mrakovica	"Discocyclinae limestones": limestone, shales, biogenic limestones brecciated limestones	Lithotamnium sp. Lithophyllum sp. Distichoplax biserialis Nummulites sp. Globorotaliae Planorbulinae Globigerina pseudobuloides	Paleocene - Lower Eocene Upper Paleocene (Thanetian)	Jovanović and Magas, 1986 Ustaszewski et al., 2009
Kozara	Kostajnica	"E1,2"		"Kozara Flysch":	microflora	Lower - Mid Eocene	Jovanović and Magas, 1986
Kozara	Nova Gradiska	"E1,2"	Turjak creek	"Kozara Flysch": sandstone arcose, subarcose siltstone, shales conglomerates	Discocyclina seunesi Miliolidae Nummulites sp. Lithotamnium sp. Rotaliidae Alveolina sp. Codiacea Coralinacea Operculina Microflora	Lower - Mid Eocene	Šparica et al., 1984

Notes:

1) Names of map sheets correspond to the originally assigned names of the 1:100.000 map sheets of the Basic Geological Map of Former Yugoslavia, Federal Geologic Institute, Beograd.

2) The lithological code reported here corresponds to the originally assigned codes on the 1:100.000 map sheets of Former Yugoslavia

3) Note that the Campanian-age pelagic limestones on top of the Campanian magmatics in Kozara and Prosara remained unidentified in the original 1:100,000 map sheets.

4) Left blank where no particular locality was indicated in the original source

5) The dominant lithology as inferred from the distribution on the 1:100.000 geological map sheets is underlined

6) References refer to the main manuscript.

This compilation relies on the original information provided with the explanatory notes to the 1:100,000 map sheets of the Basic Geological Map of Former Yugoslavia unless indicated otherwise. The original texts were written in Serbo-Croatian (with the exception of Ustaszewski et al., 2009). Translation: K. Ustaszewski.

	bulk	Ms*	std	Bt*	std	Pl*	std
	wt%	wt%	2σ	wt%	2σ	wt%	2σ
SiO2	67.67	46.29	0.75	35.96	0.47	64.68	0.72
TiO2	0.84	0.54	0.13	1.64	0.36	0.00	0.00
Al2O3	15.12	34.84	0.57	17.95	0.41	22.16	0.76
CaO	1.62	-	-	0.02	0.02	4.01	0.36
FeO	4.97	3.16	0.25	22.08	0.59	-	-
MgO	2.34	0.63	0.08	7.99	0.48	-	-
MnO	0.04	0.04	0.02	0.31	0.12	-	-
K2O	3.29	10.03	0.20	9.22	0.15	-	-
Na2O	2.05	0.74	0.08	0.13	0.07	9.74	0.34
Total	100.16**	96.27		95.30		100.59	

Data Set S2: Bulk and mineral composition of an amphibolite facies metapelite (sample UK06-62) from the Motajica inselberg used for thermobarometric calculations. See Fig. 7b for sample location.

* average of 10 analyses** inclusive loss on ignition (LOI) of 2.21%

standard deviation std

wt% weight percent Data Set S3: U-Pb isotopic data of analyzed zircons and monazites from Prosara and Motajica igneous rocks.

Number	Sumber Weight Concentrations					Atomic ratios							Apparent ages E			Error
a)	[mg]	U	Pb	Pb	Th/U	206/204	207/235	Error	206/238	Error	207/206	Error	206/238	207/235	207/206	corr.
								2σ		2σ		2σ				
			rad.	nonrad.				[%]		[%]		[%]				
		[ppm]	[ppm]	[pg]	b)	c)	d)		d)		d)					
Alkalifeldsn	ar granite	Prosara	11K04-2													
1 zir	0.0025	, 1103a1a 884	11.46	0.50	0.38	3739	0.08477	0.25	0.01292	0.20	0.04760	0.14	82.72	82.62	79.46	0.83
2 zir	0.0023	1112	13.94	4.78	0.25	463	0.08507	0.34	0.01294	0.20	0.04770	0.26	82.85	82.90	84.38	0.63
3 zir	0.0025	862	19.32	0.62	0.30	2959	0.08472	0.25	0.01292	0.20	0.04757	0.15	82.73	82.57	77.97	0.80
4 zir	0.0025	1473	18.91	0.69	0.34	4534	0.08484	0.24	0.01291	0.20	0.04762	0.13	82.66	82.69	80.43	0.80
5 zir	0.0020	875	11.20	0.89	0.34	1665	0.08457	0.29	0.01288	0.20	0.04764	0.21	82.47	82.43	81.40	0.69
6 zir	0.0027	695	9.91	0.63	0.74	2529	0.08470	0.29	0.01290	0.20	0.04761	0.20	82.65	82.55	79.91	0.73
Motaijca Gr	anite, UK	04-4														
1 mon	0.0015	1072	52.14	3.75	38.81	138	0.02661	0.94	0.00433	0.24	0.04457	0.86	27.86	26.67		0.43
2 mon	0.0016	1465	62.14	9.30	33.57	89	0.02646	1.11	0.00436	0.24	0.04399	1.04	28.06	26.52		0.39
3 mon	0.0029	1040	50.43	8.15	38.59	123	0.02663	0.88	0.00438	0.23	0.04409	0.81	28.18	26.69		0.42
4 zir	0.0132	1498	6.45	0.54	0.51	10050	0.02665	0.24	0.00415	0.23	0.04652	0.08	26.73	26.71	24.75	0.94
5 zir	0.0046	2213	9.57	0.53	0.52	5239	0.02674	0.28	0.00414	0.24	0.04679	0.15	26.66	26.79	38.60	0.84
6 zir	0.0010	6008	25.05	0.43	0.39	3877	0.02674	0.28	0.00415	0.24	0.04679	0.14	26.67	26.79	38.26	0.87
7 zir	0.0014	5401	21.68	0.48	0.25	4382	0.02678	0.27	0.00417	0.23	0.04662	0.13	26.80	26.83	30.02	0.88

mon=monazite, zir=zircon All zircons are annealed-leached [*Mattinson*, 2005] Calculated on the basis of radiogenic Pb^{208}/Pb^{206} ratios, assuming concordancy Corrected for fractionation and spike a)

b)

c)

Corrected for fractionation, spike, blank and common lead [Stacey and Kramers, 1975] d)

Stop T(Y) "Ar (b)" "ad (b) "b,m"Ar "b,m"Ar "b,m"Ar error (z + b) sgc (b) or. (z + b) 1 500 8.9% 2.500 56.6% 1.53 1.76.5% 2.00 1.06 4.53 0.53 3 64.5 1.19% 2.53 8.07 7.58 1.06 1.37 2.53 1.06 1.37 2.53 0.03 2.23 2.44 0.49 2.33 0.01 6 7.60 1.01% 3.04 2.20 7.68% 5.385 4.65% 1.29 3.06 0.99 2.02 2.44 0.49 7 8.60 1.35% 2.20 7.68% 5.385 4.65% 1.29 3.06 0.99 2.02 2.44 0.43 arrecting factors Daly III 1.00 1.5% 2.32% 1.38 2.37% fmor (e^+b) age (b) e.1.93 1.34 1.31 1.2 2.3 0.7% 1 300 5.2% <td< th=""><th>Prosara, san</th><th>nple UK06-58</th><th>8, fine fraction</th><th>6 - 12 μm, 15 r</th><th>ng</th><th></th><th>Measuremen</th><th>t number: 4572</th><th></th><th></th><th></th></td<>	Prosara, san	nple UK06-58	8, fine fraction	6 - 12 μm, 15 r	ng		Measuremen	t number: 4572									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Step	T[°C]	³⁹ Ar (%) ^b	⁴⁰ Ar (mV)	rad (%)	³⁹ Ar/ ³⁷ Ar	(³⁶ Ar) _{Ca}	40Ar*/39Ar	error (± %)	age (Ma)	err. (± Ma) ^c						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	590	8.9%	29.06	95.6%	1 945	<u>(%)</u> 37.66%	2.02	1.06	49.7	0.52						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	620	0.9%	29.00	96.1%	3 969	28.97%	1.86	0.94	45.8	0.32						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	020	7.876	29.32	90.176	3.909	20.97/0	1.80	0.94	45.8	0.43						
n n <	3	645	11.0%	25.90	80.7%	4.839	4.89%	1.40	1.4/	36.0	0.52						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	670	0.170	13.64	/1./70	7.551	2.03%	1.00	5.17	20.5	0.85						
0 0.00 1.10 4.2.05 1.2.00 3.5.05 0.9.92 2.2.02 2.4.02	2	710	12.0%	19.04	/5.0%	8.926	3.06%	0.94	3.11	23.2	0.72						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6"	/60	19.1%	30.41	82.9%	11.320	3.86%	0.99	2.02	24.4	0.49						
8 120 171% 53 58 85 9% 1.44 23 17% 129 1.51 31.8 0.47 tentative "Ar defining mean age: 53.2% tentative "Ar defining mean age: 53.2% tentative "Ar defining mean age: 53.2% tentative "Ar defining mean age: 34.4 1.13 arresting factors Ca 36.37 = 0.00027 K 40.39 = 0.0013K ± 2.0.4% Ca 36.37 = 0.00027 K 40.39 = 0.0013K ± 2.0.4% TYC Arr (%) " Arr (%) " Arr (%) " "Arr (%)" Measurement number: 457 TYC 34.4 L131 122 2.12 2.12 2.14 0.15 1 TYC Arr (%) " Arr (%) " Arr (%) " Arr (%)" Weasurement number: 441 1 10.0 2.12 2.12 2.12 2.12 2.12 2.13 1.23 Arr (%) Tr (%) Arr (%) <th cols<="" td=""><td>7ª</td><td>860</td><td>13.5%</td><td>22.30</td><td>76.8%</td><td>5.855</td><td>4.63%</td><td>1.02</td><td>3.06</td><td>25.3</td><td>0.77</td></th>	<td>7ª</td> <td>860</td> <td>13.5%</td> <td>22.30</td> <td>76.8%</td> <td>5.855</td> <td>4.63%</td> <td>1.02</td> <td>3.06</td> <td>25.3</td> <td>0.77</td>	7ª	860	13.5%	22.30	76.8%	5.855	4.63%	1.02	3.06	25.3	0.77					
total gas age: j. j. doi: j. j. endition for the set of the	8	1250	17.1%	35.58	85.9%	1.445	23.17%	1.29	1.51	31.8	0.47						
(arrecting factors baly iff if arrecting factors colspan="2">colspan="2">colspan="2">colspan="2">colspan="2">colspan="2" colspan="2">colspan="2" colspan="2" colspa="2" colspa="2" colspan="2" colspan="2" colspan="2" colspa="2"		_						total gas age:		31.4	1.13						
surveding factors Daily HF 1.00 5.0% C 2.6377 0.0027 K 40.79 0.0254 Tree T Tree T <th< td=""><td></td><td></td><td>cumulative ³⁹A</td><td>r defining mea</td><td>ın age:</td><td>53.2%</td><td></td><td>mean age:</td><td></td><td>24.7</td><td>1.23</td></th<>			cumulative ³⁹ A	r defining mea	ın age:	53.2%		mean age:		24.7	1.23						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	correcting fa	actors	Daly/HF	1.00	± 5.0%		Ca 36/37 =	0.00027	K 40/39 =	0.0254							
Terms any bet K46-58, coarse-grained serielic aggregate, 96.7 mg Measurement number: 4571 Nep TfC1 "Art/%"A "Art/%"A <td></td> <td></td> <td>=</td> <td></td> <td></td> <td></td> <td>Ca 39/37 =</td> <td>0.00039</td> <td>J =</td> <td>0.013815</td> <td>± 0.4%</td>			=				Ca 39/37 =	0.00039	J =	0.013815	± 0.4%						
$ \frac{\text{Nep}}{1 \text{ (C)}} = \frac{n}{4r} (2^{+})^{-} \frac{n}{4r} (mV)} rad (2^{+}) = \frac{n}{4r} n^{2}/r}{(2^{+})^{-}} \frac{n}{4r} r^{-} r^{2}/r} r rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} r^{-} r^{2}/r} r rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} r^{-} r^{2}/r} r rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} r^{-} r^{2}/r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} r^{-} r^{2}/r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} r^{-} r^{2}/r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm 5^{+}) age (Ma) err. (\pm Ma)^{-}}{(2^{+})^{-}} \frac{n}{4r} rerv (\pm$	Prosara, san	nple UK06-58	8, coarse-graine	ed sericite agg	regate, 90.7 mg		Measuremen	t number: 4577									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Step	T[°C]	³⁹ Ar (%) ^b	⁴⁰ Ar (mV)	rad (%)	³⁹ Ar/ ³⁷ Ar	(³⁶ Ar) _{Ca} (%)	⁴⁰ Ar*/ ³⁹ Ar	error (± %)	age (Ma)	err. (± Ma) ^c						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	590	11.1%	17.78	92.6%	1.181	52.38%	1.00	2.12	24.8	0.52						
3 6:50 5.2% 10.07 91.3% 2.268 26.10% 1.20 2.5.2% 29.7 0.75 4 6:80 5.4% 9.97 86.6% 2.106 18.34% 1.07 1.71 2.66 0.45 6' 7.40 5.4% 8.73 79.7% 2.111 12.90% 1.00 2.42 2.4% 0.61% 8' 8.20 6.1% 9.90 86.6% 1.099 2.16% 1.00 2.42 2.4% 0.11 9' 870 6.1% 9.90 86.6% 1.298 2.16% 1.00 2.42 2.4% 0.11 10' 9.30 7.6% 1.23 8.85% 1.123 1.00 4.51 2.4% 1.11 11 1020 9.1% 1.537 90.7% 1.361 38.03% 1.08 1.62 2.6.8 0.338 11 1020 9.1 # 0.0034 K 0.39 = 0.0024 K 0.39 = 0.01380 ≠ 0.5% Camountative "Ar (%n" mathing plateau age: 31.7% 1.36 5.33 <t< td=""><td>2</td><td>615</td><td>9.2%</td><td>16.57</td><td>95.2%</td><td>1.630</td><td>58.41%</td><td>1.13</td><td>1.92</td><td>27.9</td><td>0.53</td></t<>	2	615	9.2%	16.57	95.2%	1.630	58.41%	1.13	1.92	27.9	0.53						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	650	5.2%	10.07	91.3%	2.268	26.10%	1.20	2.55	29.7	0.75						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	680	5.4%	9.72	86.6%	2.092	18.88%	1.12	3.42	27.7	0.94						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	710	5.8%	9.97	86.3%	2.196	18.34%	1.07	1.71	26.6	0.45						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6 ^a	740	5.4%	8.73	79.7%	2.111	12.90%	1.00	7.64	24.8	1.89						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7 ^a	770	6.6%	10.55	85.6%	2.049	19.57%	1.00	2.42	24.9	0.60						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8 ^a	820	61%	9.80	86.6%	1 989	21 69%	1.00	4 51	24.8	1.11						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q ^a	870	6.1%	9.92	89.3%	1 743	29.81%	1.00	2.05	25.3	0.51						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10ª	930	7.6%	12.35	85.9%	1.596	24.12%	1.01	3.92	25.5	0.98						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	1020	9.1%	15.87	90.7%	1.350	38.03%	1.01	1.62	26.8	0.43						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	1250	22.494	20.55	01.1%	1.036	45 629/	1.00	1.02	20.0	0.45						
$ \begin{array}{ c c c c c c } \hline \mbox{turulative $^{10} Ar defining plateau age: 31.7%} & \begin{turulative $^{10} Ar defining plateau age: 31.7\% & \bedin $10.7\% & \begin{turulative $^{10} Ar defining$	12	1250	22.470	39.33	91.170	1.030	43.05%	1.10	1./1	27.2	0.40						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Г	aumulativa ³⁹ A	r dofining plat		21 79/		iotai gas age.		20.4	1.00						
orrecting factors Daly.HF $2.0 \pm 5.0\%$ $Ca 36/37 = 0.0023$ $K 40/39 = 0.025$ $K 40/39 = 0.01380 \pm 0.2\%$ Motajica, sample M120a; amphiboles, 39.4 mg measuremet measuremet and the sample of the		L	cumulative A	r denning pia	eau age:	31.770		plateau age:		25.0	1.45						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	orrecting fa	actors	Daly/HF	9.20	± 5.0%		Ca 36/37 =	0.00024	K 40/39 =	0.0254							
Metagica, sample M120a; ampliboles, 39.4 mg Measurement number: 4644 Step Tl*Cl ³⁹ Ar (%) ³ ⁶⁴ Ar (mV) rad (%) ¹⁰ Ar (³⁵ Ar (¹⁶ Ar) ¹⁶ Ar (¹⁶ Ar) ¹⁶ Ar error (± %) age (Ma) err. (± Ma) ⁷ 1 750 1.8% 4.90 70.3% 0.287 3.63% 12.08 6.11 26.98 15.32 2 850 2.5% 2.43 76.4% 0.220 20.71% 4.23 5.33 99.1 5.14 3* 950 7.9% 4.62 89.8% 0.121 66.38% 2.24 6.69 5.75 3.79 5* 1025 4.18.% 23.77 91.5% 0.0081 80.08% 2.48 2.81 5.8.3 3.23 6* 1050 3.0% 1.68 97.3% 0.084 93.10% 2.46 5.15 58.3 2.25 for toto 1.11 96.6% 0.073 92.63% 2.16 5.32 2.0603 6.65							Ca 39/37 =	0.00039	J =	0.013830	$\pm 0.2\%$						
$ \frac{1}{2} \frac{1}{5^{\circ}} \frac{1}{7^{\circ}} \left[\frac{1}{9^{\circ}} \frac{3^{\circ}}{4^{\circ}} \left(\frac{4}{9^{\circ}} \right)^{-\frac{1}{9^{\circ}}} \frac{4^{\circ}}{4^{\circ}} \left(\frac{1}{5^{\circ}} \right)^{-\frac{1}{9^{\circ}}} \frac{4^{\circ}}}{4^{\circ}} \left(\frac{1}{5^{\circ}} \right)^{-\frac{1}{9^{\circ}}} \frac{4^{\circ}}}{5^{\circ}} \left(\frac{1}{5^{\circ}} \right)^{-\frac{1}{9^{\circ}}} \frac{1}{5^{\circ}} \left(\frac{1}{5^{\circ}} \right)^{-\frac{1}{9^{\circ}}} \frac{4^{\circ}}}{5^{\circ}} \left(\frac{1}{5^{\circ}} \right)^{-\frac{1}{9^{\circ}}} \frac{4^{\circ}}}{5^{\circ}} \frac{1}{5^{\circ}} \left(\frac{1}{5^{\circ}} \right)^{-\frac{1}{9^{\circ}}} \frac{4^{\circ}}}{5^{\circ}} \frac{1}{5^{\circ}} \frac{1}{5$	Motaiica, sa	ample M120a	: amphiboles. 3	39.4 mg			Measuremen	t number: 4644									
$\frac{(56)}{(22)} = \frac{(56)}{(22)} = \frac{(56)}{(22)$	Step	T[°C]	³⁹ Ar (%) ^b	⁴⁰ Ar (mV)	rad (%)	³⁹ Ar/ ³⁷ Ar	(³⁶ Ar) _{Ca}	40Ar*/39Ar	error (± %)	age (Ma)	err. (± Ma) ^c						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							(%)										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	750	1.8%	4.90	70.3%	0.387	3.65%	12.08	6.11	269.8	15.32						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	850	2.5%	2.43	76.4%	0.220	20.71%	4.23	5.33	99.1	5.14						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3ª	950	7.9%	4.62	89.8%	0.121	68.38%	2.54	5.61	60.2	3.32						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4 ^a	1000	13.6%	7.57	70.3%	0.083	47.02%	2.42	6.69	57.5	3.79						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5 ^a	1025	41.8%	23.77	91.5%	0.081	80.08%	2.48	2.81	58.8	1.63						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6 ^a	1050	3.0%	1.68	97.3%	0.084	93.10%	2.46	5.69	58.4	3.27						
8 ^a 1350 27.3% 15.36 75.3% 0.058 $61.61\% 2.46$ 5.15 58.3 2.95 $total gas age: 63.3 6.65$ cumulative 39 Ar defining plateau age: 95.7% Ca 36/37 = 0.00025 K 40/39 = 0.00254 Ca 39/37 = 0.00039 J = 0.01352 ± 0.4% Ca 39/37 = 0.00039 J = 0.01352 ± 0.4% Ca 39/37 = 0.00039 J = 0.01352 ± 0.4% Ca 39/37 = 0.00039 J = 0.01352 ± 0.4% Ca 39/37 = 0.00039 J = 0.01352 ± 0.4% Ca 39/37 = 0.00039 J = 0.01352 ± 0.4% Ca 39/37 = 0.00039 J = 0.01352 ± 0.4% Ca 39/37 = 0.00039 J = 0.01352 ± 0.4% Ca 39/37 = 0.00039 J = 0.01352 ± 0.4% Ca 39/37 = 0.00039 J = 0.01352 ± 0.4% Ca 39/37 = 0.00039 J = 0.01352 ± 0.4% Ca 39/37 = 0.00039 J = 0.01352 ± 0.4% J = 0.01352 J = 0.00039 J = 0.01	7 ^a	1200	2.1%	1.11	96.6%	0.073	92.62%	2.35	7.06	55.8	3.88						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8 ^a	1350	27.3%	15.36	75.3%	0.058	61.61%	2.46	5.15	58.3	2.95						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								total gas age:		63.3	6.65						
orrecting factors Daly/HF 8.41 \pm 5.0% Ca 36/37 = 0.00025 K 40/39 = 0.00254 Ca 39/37 = 0.00039 J = 0.013352 \pm 0.4% Metagica, sample M129; amphiboles, 23.4 mg Metagica, sample M129; amphiboles, 21.9 Metagica, amphiboles, 23.4 mg		Γ	cumulative ³⁹ A	r defining plat	eau age:	95.7%		plateau age:		58.5	6.00						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	orrecting fa	- actors	Dalv/HF	8 41	± 5.0%		Ca 36/37 =	0.00025	K 40/39 =	0.00254							
Motajica, sample M129; amphiboles, 23.4 mg Measurement number: 4672 Step T °C 39 Ar (%) ^b 40 Ar (mV) rad (%) 39 Ar/ 37 Ar ${}^{(6^{6}Ar)_{C_{5}}}$ 40 Ar */ 59 Ar error (± %) age (Ma) err. (± Ma) ^c 1 750 12.3% 2.52 70.3% 0.915 10.03% 1.73 3.45 41.2 1.40 2 850 8.6% 2.19 56.2% 0.287 13.13% 2.16 3.93 51.2 1.98 3 ^a 970 37.8% 10.11 93.6% 0.102 84.44% 2.26 1.80 53.7 0.95 4 ^a 995 10.2% 2.74 74.1% 0.067 58.00% 2.29 3.89 54.2 2.08 5 ^a 1020 4.9% 1.35 62.9% 0.075 41.67% 2.31 4.92 54.9 2.66 6 ^a 150 6.8% 1.82 78.6% 0.069 63.86% 2.26 5.16 53.7 2.73 7 ^a 1280 19.4% 5.00 63.5%	······		=				Ca 39/37 =	0.00039	J =	0.013352	± 0.4%						
Measurement number 40/2 Measurement number 40/2 Step T[°C] 39Ar (%)b 49Ar (mV) rad (%) 39Ar/37Ar (%Ar) _{Ca} 40/2 Step T[°C] 39Ar (%)b 49Ar (mV) rad (%) 39Ar/37Ar (%Ar) _{Ca} 40/2 1 750 12.3% 2.52 70.3% 0.915 10.03% 1.73 3.45 41.2 1.40 2 850 8.6% 2.19 56.2% 0.287 13.13% 2.16 3.93 51.2 1.98 3 ^a 970 37.8% 10.11 93.6% 0.102 84.44% 2.26 1.80 53.7 0.95 4 ^a 995 10.2% 2.74 74.1% 0.069 63.86% 2.26 5.16 53.7 2.73 7 ^a 1280 19.4% 5.00 63.5% 0.0044 57.07% 2.19 2.33 52.0 1.20 <th colspan="6" correctin<="" th=""><th>Matailaa aa</th><th></th><th>amphihalas 23</th><th>4 ma</th><th></th><th></th><th>Maaannomaa</th><th>4 mmhan 4673</th><th></th><th></th><th></th></th>	<th>Matailaa aa</th> <th></th> <th>amphihalas 23</th> <th>4 ma</th> <th></th> <th></th> <th>Maaannomaa</th> <th>4 mmhan 4673</th> <th></th> <th></th> <th></th>						Matailaa aa		amphihalas 23	4 ma			Maaannomaa	4 mmhan 4673			
$\frac{(\%)}{(1 - 1)^{2}} = \frac{(\%)}{(1 - 1)^{2}} $	Step	T[°C]	³⁹ Ar (%) ^b	⁴⁰ Ar (mV)	rad (%)	³⁹ Ar/ ³⁷ Ar	(³⁶ Ar) _{Ca}	⁴⁰ Ar*/ ³⁹ Ar	error (± %)	age (Ma)	err. (± Ma) ^c						
$\frac{1}{2} + \frac{1}{2} + \frac{1}$	1	750	12.3%	2 52	70.3%	0.915	(%) 10.03%	1 73	3 4 5	41.2	1 40						
$\frac{1}{3^{a}} = \frac{1}{900} + \frac{1}{300} + \frac{1}{200} + \frac{1}{3000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{2000} + \frac{1}{1000} + \frac{1}{2000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{1000} + \frac{1}$	2	850	8 6%	2.02	56 2%	0.287	13 130/	2.16	3 02	51.2	1.40						
$\frac{4^{a}}{995} \frac{9}{10.2\%} \frac{10.11}{2.26} \frac{10.11}{2.4} \frac{10.11}{2.20} \frac{10.10}{2.29} \frac{11.60}{3.2.7} \frac{10.00}{3.2.7} \frac{10.00}{3.2.7} \frac{10.00}{2.29} \frac{10.00}{3.89} \frac{10.00}{54.2} \frac{10.00}{2.29} \frac{10.00}{3.89} \frac{10.00}{54.2} \frac{10.00}{2.29} \frac{10.00}{3.89} \frac{10.00}{54.2} \frac{10.00}{2.29} \frac{10.00}{3.89} \frac{10.00}{54.2} \frac{10.00}{2.29} \frac{10.00}{2.29} \frac{10.00}{3.89} \frac{10.00}{2.29} 10.0$	2a	070	37 8%	10.11	93.6%	0.102	8/1 //0/	2.10	1.80	53 7	0.05						
$\frac{7}{5^{a}} \frac{1027^{a}}{1020} \frac{10.27^{a}}{4.9\%} \frac{2.17}{1.35} \frac{10.27^{a}}{62.9\%} \frac{1.47}{0.0075} \frac{10.07^{a}}{50.007^{b}} \frac{2.29}{2.29} \frac{3.69}{5.05} \frac{54.2}{54.9} \frac{2.08}{2.66}$ $\frac{5^{a}}{6^{a}} \frac{1150}{150} \frac{6.8\%}{6.8\%} \frac{1.32}{1.82} \frac{78.6\%}{0.069} \frac{0.0059}{63.86\%} \frac{63.86\%}{2.26} \frac{2.16}{5.16} \frac{53.7}{2.73} \frac{2.73}{52.0} \frac{1.20}{1.20}$ $\frac{10000000}{1.20} \frac{1000000}{1.20} \frac{1.20}{1.20} \frac{1.20}{1.$., /1а	005	10.20%	2 74	7/ 10/	0.102	59 000/	2.20	2.00	510	0.93						
$\frac{5}{6^{a}} \frac{1020}{1150} = \frac{4.77^{a}}{6.8\%} \frac{1.35}{1.82} \frac{02.97^{a}}{78.6\%} \frac{0.075}{0.069} \frac{41.07^{a}}{63.86\%} \frac{2.31}{2.26} \frac{4.92}{51.6} \frac{54.9}{53.7} \frac{2.73}{2.73}$ $\frac{7^{a}}{1280} \frac{19.4\%}{1280} \frac{5.00}{63.5\%} \frac{63.5\%}{0.044} \frac{0.044}{57.07\%} \frac{2.19}{2.19} \frac{2.33}{2.33} \frac{52.0}{1.20} \frac{1.20}{1.20} \frac{1.20}{1.20}$	-+ a	1020	10.270	2.74	/ +.1 /0	0.007	41 (70/	2.29	3.09	54.0	2.00						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S ∠a	1020	4.9%	1.33	02.9%	0.075	41.0/%	2.31	4.92	54.9	2.00						
$\frac{1280 \ 19.4\%}{1280 \ 19.4\%} 5.00 \ 65.5\% \ 0.044 \ 57.0\% \ 2.19 \ 2.33 \ 52.0 \ 1.20 \ total gas age: 51.7 \ 4.80 \ 1000 \ 1$	0-	1150	0.8%	1.82	/ 8.0%	0.009	03.80%	2.26	5.16	55./	2.73						
$\frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar defining plateau age:}} \\ \frac{\text{cumulative }^{39}\text{Ar defining plateau age:}}{\text{cumulative }^{39}\text{Ar released}} \\ \frac{\text{cumulative }^{39}\text{Ar released}}{\text{cumulative }^{39}\text{Ar released}} \\ \text{cumulativ$	/"	1280	19.4%	5.00	63.5%	0.044	57.07%	2.19	2.33	52.0	1.20						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		г				70.20/		total gas age:		51.7	4.80						
$\frac{\text{Daly/HF}}{=} & \frac{8.35 \pm 5.0\%}{\text{Ca} 36/37 =} & \frac{0.0024}{0.0039} & \frac{\text{K} 40/39 =}{\text{J}} & \frac{0.0254}{0.013352 \pm 0.2\%}$			cumulative A	r defining plat	eau age:	/9.2%		plateau age:		53.4	5.09						
$Ca 39/37 = 0.00039 \qquad J = 0.013352 \pm 0.2\%$ a) steps used for calculating mean or plateau age c) 1 σ error constant correcting factors (${}^{40}Ar/{}^{36}Ar$) _{air} 299 ± 1.0 % = K/Ca-conv. 0.247		-															
$ ({}^{40}\text{Ar}/{}^{36}\text{Ar})_{air} 299 \pm 1.0 \% $ $ ({}^{40}\text{Ar}/{}^{36}\text{Ar})_{air} 299 \pm 1.0 \% $ $ = K/Ca-conv. 0.247 $	orrecting fa	actors	Daly/HF =	8.35	\pm 5.0%		Ca 36/37 =	0.00024	K 40/39 =	0.0254							
)% of total ³⁹ Ar released K/Ca-conv. 0.247	orrecting fa	actors	Daly/HF =	8.35	± 5.0%		Ca 36/37 = Ca 39/37 =	0.00024 0.00039	K 40/39 = J =	0.0254	± 0.2%						
))% of total "Ar released K/Ca-conv. 0.247) steps used	actors	Daly/HF = g mean or platea	8.35 u age	± 5.0% c) 1σ error		Ca 36/37 = Ca 39/37 = constant corr	0.00024 0.00039 recting factors	K 40/39 = J =	0.0254 0.013352 (⁴⁰ Ar/ ³⁶ Ar) _{air}	± 0.2% 299 ± 1.0 %						
) steps used	actors for calculatin	Daly/HF = g mean or platea	8.35 u age	± 5.0% c) 1σ error		Ca 36/37 = Ca 39/37 = constant corr	0.00024 0.00039 recting factors	K 40/39 = J =	0.0254 0.013352 $(^{40}Ar/^{36}Ar)_{air} =$	± 0.2% 299 ± 1.0 %						

Data Set S4:⁴⁰Ar/³⁹Ar analytical data for incremental heating experiments on various mineral concentrates and fine fractions

Data Set S5: Electron-microprobe analyses of amphiboles dated by the ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ stepwise heating technique. The analyses were performed by Jürgen Konzett on a JEOL microprobe at the Institute of Mineralogy & Petrography at the University Innsbruck.

Sample M120

	amph 1-	amph 1-	amph 2-	amph 2-	amph 3-	amph 4-	amph 4-	amph 5-	amph 5-	amph
	1	2	1	2	1	1	2	1	2	0
	rim	core	rim	core	rim	rim	core	rim	core	rim
SiO2	45 24	49 46	45 40	51.87	44 68	47 45	55 99	45 44	51.82	45 50
TiO2	0.33	0.18	0.29	0.15	0 44	0.27	0.00	0.32	0.05	0.37
A12O3	12.18	8 29	12.04	6.05	11.90	10.45	1.56	11.89	5.88	11.69
Cr2O3	0.07	0.00	0.07	0.06	0.00	0.14	0.00	0.05	0.00	0.05
Fe2O3	4 4 8	4 68	4 88	5 56	4 78	3 99	0.82	3.65	5.18	417
FeO	10 40	8 46	9.68	6 4 9	10.36	9 77	8.25	10.59	6 73	10.76
MnO	0.25	0.30	0.34	0.36	0.22	0.27	0.28	0.24	0.32	0.28
MgO	12.21	14.32	12.13	15.93	12.13	13.21	19.02	12.47	16.29	12.21
CaO	12.36	11.90	11.81	11.68	12.41	12.15	12.94	12.42	12.17	12.49
Na2O	1.75	1.24	1.85	1.05	1.61	1.51	0.25	1.79	0.98	1.55
K2O	0.32	0.37	0.32	0.32	0.34	0.44	0.05	0.32	0.27	0.35
H2O	2.08	2.11	2.08	2.14	2.07	2.1	2.17	2.08	2.14	2.08
Total	101.67	101.31	100.89	101.66	100.93	101.75	101.32	101.25	101.83	101.51
Si	6.507	7.023	6.558	7.265	6.485	6.766	7.791	6.555	7.254	6.560
Ti	0.036	0.019	0.032	0.016	0.048	0.029	0.000	0.035	0.005	0.040
Al	2.065	1.387	2.050	0.999	2.036	1.756	0.256	2.021	0.970	1.986
Cr	0.008	0.000	0.008	0.007	0.000	0.016	0.000	0.006	0.000	0.006
Fe3	0.485	0.500	0.531	0.586	0.522	0.429	0.086	0.396	0.546	0.453
Fe2	1.251	1.004	1.169	0.760	1.258	1.165	0.960	1.277	0.787	1.298
Mn	0.031	0.036	0.042	0.043	0.027	0.033	0.033	0.029	0.038	0.034
Mg	2.618	3.031	2.612	3.326	2.624	2.808	3.945	2.681	3.399	2.624
Ca	1.905	1.810	1.828	1.753	1.930	1.856	1.929	1.920	1.825	1.929
Na	0.488	0.341	0.518	0.285	0.453	0.418	0.067	0.501	0.266	0.433
K	0.059	0.067	0.059	0.057	0.063	0.080	0.009	0.059	0.048	0.064
Sum Cations	15.452	15.219	15.405	15.095	15.446	15.354	15.076	15.479	15.140	15.427
xMg (FeII+)	0.677	0.751	0.691	0.814	0.676	0.707	0.804	0.677	0.812	0.669
xMg (Fetot)	0.601	0.668	0.606	0.712	0.596	0.638	0.790	0.616	0.718	0.600
Fe3+/Fe(tot)	0.279	0.333	0.312	0.435	0.293	0.269	0.082	0.237	0.409	0.259
Al(IV)	1.493	0.977	1.442	0.735	1.515	1.234	0.209	1.445	0.746	1.441
Al(VI)	0.572	0.410	0.608	0.263	0.521	0.522	0.047	0.576	0.224	0.546
Na(M4)	0.095	0.190	0.172	0.247	0.070	0.144	0.000	0.080	0.175	0.071
Na(A)	0.393	0.152	0.346	0.038	0.383	0.274	0.067	0.420	0.091	0.362
Tschermaks	1.136	0.949	1.209	0.887	1.139	1.024	0.133	1.047	0.781	1.084
Cr - Al6	0.007	0.000	0.007	0.007	0.000	0.015	0.000	0.005	0.000	0.005
Fe3+ - Al6	0.426	0.528	0.439	0.660	0.458	0.418	0.647	0.378	0.699	0.418
Ti-vector	0.036	0.019	0.032	0.016	0.048	0.029	0.000	0.035	0.005	0.040
Edenite	0.452	0.219	0.405	0.095	0.446	0.354	0.076	0.479	0.140	0.427
Plagioclase	0.095	0.190	0.172	0.247	0.070	0.144	0.000	0.080	0.175	0.071
K - Na(A)	0.130	0.306	0.146	0.602	0.141	0.226	0.116	0.123	0.345	0.151
Fe2+ - Mg	0.321	0.247	0.306	0.184	0.322	0.291	0.194	0.320	0.186	0.328
Mn - Mg	0.008	0.009	0.011	0.010	0.007	0.008	0.007	0.007	0.009	0.009
FM - Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.071	0.000	0.000	0.000
(M4)										

all analyses except amph 4-2 normalized to 13 cations + Na + K + Ca and 23 ox + stoichiometric (OH, F, Cl) amph 4-2 normalized to 15 cations + Na + K and 23 ox + stoichiometric (OH, F, Cl)

cation allocation to lattice positions

Si	6.507	7.023	6.558	7.265	6.485	6.766	7.791	6.555	7.254	6.560
Al(IV)	1.493	0.978	1.442	0.735	1.515	1.234	0.209	1.445	0.746	1.441

Electronic supplement to: Ustaszewski K. et al., Tectonics, doi:10.1029/2010TC002668, 2010 1 of 3

Sample M120

	amph 1-	amph 1-	amph 2-	amph 2-	amph 3-	amph 4-	amph 4-	amph 5-	amph 5-	amph
	1	2	1	2		1	2	1	2	0
	rim	core	rim	core	rim	rim	core	rim	core	rim
Σ	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
Al(VI)	0.572	0.410	0.608	0.264	0.521	0.522	0.047	0.576	0.224	0.546
Ti	0.036	0.019	0.032	0.016	0.048	0.029	0.000	0.035	0.005	0.040
Cr	0.008	0.000	0.008	0.007	0.000	0.016	0.000	0.006	0.000	0.006
Fe3	0.485	0.500	0.531	0.586	0.522	0.429	0.086	0.396	0.546	0.453
Fe2	1.251	1.004	1.169	0.760	1.258	1.165	0.960	1.277	0.787	1.298
Mn	0.031	0.036	0.042	0.043	0.027	0.033	0.033	0.029	0.038	0.034
Mg	2.618	3.031	2.612	3.326	2.624	2.808	3.874	2.681	3.399	2.624
Σ	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.071	0.000	0.000	0.000
Ca	1.905	1.810	1.828	1.753	1.930	1.856	1.929	1.920	1.825	1.929
Na	0.095	0.190	0.172	0.247	0.070	0.144	0.000	0.081	0.175	0.071
Σ	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
Na	0.393	0.152	0.346	0.038	0.383	0.274	0.067	0.420	0.091	0.363
Κ	0.059	0.067	0.059	0.057	0.063	0.080	0.009	0.059	0.048	0.064
vac	0.548	0.781	0.595	0.905	0.554	0.646	0.924	0.521	0.861	0.573
Σ	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Sample M129								
			Ca-Amp	hibole			FeMg-An	phibole
	amph 1-1	amph 2-1	amph 3-1	amph 3-2	amph 5-1	amph 5-3	amph 1-2	amph 4
SiO2	48.81	48.53	44.55	50.66	48.44	43.96	53.41	52.74
TiO2	0.29	0.42	0.46	0.33	0.43	0.16	0.05	0.04
Al2O3	8.72	9.10	12.83	6.53	8.94	14.28	2.39	2.70
Cr2O3	0.00	0.00	0.13	0.09	0.00	0.00	0.00	0.00
Fe2O3	0.82	0.32	1.32	1.52	2.11	1.19	0.65	1.40
FeO	13.36	15.22	14.84	12.22	12.66	14.74	20.96	23.16
MnO	0.37	0.35	0.42	0.42	0.38	0.43	1.40	0.86
MgO	13.24	12.59	10.67	14.69	13.45	10.13	16.75	15.96
CaO	12.25	11.57	12.02	12.24	12.15	12.16	3.21	2.40
Na2O	1.08	1.12	1.65	0.84	1.05	1.69	0.31	0.30
K2O	0.14	0.08	0.23	0.06	0.13	0.24	0.00	0.00
H2O	2.08	2.08	2.05	2.11	2.10	2.05	2.08	2.07
Total	101.17	101.38	101.16	101.71	101.84	101.03	101.21	101.63
		malizad to	15 actions +	$N_0 \perp V$ and	22 ovugan	± 2 (OU E	C^{1}	
	110			$\ln a + \kappa a = \omega$	25 Oxygen	т 2 (ОП, Г,	CI)	
Si	7.022	7.000	6.510	7.209	6.929	6.425	7.712	7.646
Ti	0.031	0.046	0.051	0.035	0.046	0.018	0.005	0.004
Al	1.479	1.547	2.210	1.095	1.507	2.460	0.407	0.461
Cr	0.000	0.000	0.015	0.010	0.000	0.000	0.000	0.000
Fe3	0.089	0.035	0.145	0.163	0.227	0.130	0.071	0.153
Fe2	1.608	1.836	1.813	1.455	1.514	1.802	2.532	2.808
Mn	0.045	0.043	0.052	0.051	0.046	0.053	0.171	0.106
Mg	2.839	2.707	2.324	3.116	2.868	2.207	3.605	3.449
Ca	1.888	1.788	1.882	1.866	1.862	1.904	0.497	0.373
Na	0.301	0.313	0.468	0.232	0.291	0.479	0.087	0.084
Κ	0.026	0.015	0.043	0.011	0.024	0.045	0.000	0.000
Sum Cations	15.327	15.328	15.51	15.243	15.315	15.524	15.087	15.084
xMg (FeII+)	0.638	0.596	0.562	0.682	0.654	0.550	0.587	0.551

Sample M129								
	Ca-Amphibole						FeMg-An	phibole
	amph 1-1	amph 2-1	amph 3-1	amph 3-2	amph 5-1	amph 5-3	amph 1-2	amph 4
xMg (Fetot)	0.626	0.591	0.543	0.658	0.622	0.533	0.581	0.538
Fe3+/Fe(tot)	0.052	0.019	0.074	0.101	0.131	0.067	0.027	0.052
Al(IV)	0.978	1.001	1.490	0.791	1.071	1.575	0.288	0.354
Al(VI)	0.500	0.546	0.719	0.304	0.436	0.885	0.119	0.108
Na(M4)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na(A)	0.301	0.313	0.467	0.232	0.291	0.479	0.087	0.084
Tschermaks	0.651	0.673	0.980	0.548	0.756	1.051	0.201	0.269
Cr - Al6	0.000	0.000	0.015	0.018	0.000	0.000	0.000	0.000
Fe3+ - Al6	0.136	0.052	0.148	0.297	0.301	0.124	0.352	0.568
Ti-vector	0.031	0.046	0.051	0.035	0.046	0.018	0.005	0.004
Edenite	0.327	0.328	0.510	0.243	0.315	0.524	0.087	0.084
Plagioclase	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
K - Na(A)	0.079	0.045	0.084	0.045	0.075	0.085	0.000	0.000
Fe2+ - Mg	0.358	0.400	0.433	0.315	0.342	0.444	0.401	0.441
Mn - Mg	0.010	0.009	0.012	0.011	0.010	0.013	0.027	0.017
FM - Ca (M4)	0.112	0.212	0.118	0.134	0.138	0.096	1.503	1.627
cation allocation	on to lattice	positions						
Si	7 022	7 000	6 5 1 0	7 209	6 9 2 9	6 4 2 5	7 712	7 646
Al(IV)	0.978	1 001	1 490	0 791	1 071	1 575	0.288	0 354
/11(11)	0.970	1.001	1.190	0.791	1.071	1.070	0.200	0.551
Σ	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
A1(VI)	0.500	0 546	0 719	0 304	0.436	0.885	0 1 1 9	0 108
Ti	0.031	0.046	0.051	0.035	0.150	0.005	0.005	0.004
Cr	0.000	0.000	0.015	0.010	0.000	0.000	0.000	0.000
Fe3	0.089	0.035	0.145	0.163	0.227	0.130	0.071	0.153
Fe2	1 608	1 836	1 813	1 455	1 514	1 802	2.532	2.808
Mn	0.045	0.043	0.052	0.051	0.046	0.053	0 171	0.106
Mø	2 727	2 494	2 206	2.982	2 730	2 111	2 102	1 822
	2.727	2.171	2.200	2.962	2.750	2.111	2.102	1.022
Σ	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000
Mg	0.112	0.212	0.118	0.134	0.138	0.096	1.503	1.627
Ca	1.888	1.788	1.882	1.866	1.862	1.904	0.497	0.373
Na	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Σ	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
No	0.201	0.212	0 160	0 222	0.201	0.470	0.007	0.094
ina V	0.301	0.015	0.408	0.232	0.291	0.4/9	0.00	0.084
Γ.	0.026	0.015	0.043	0.011	0.024	0.045	0.000	0.000
vac	0.073	0.072	0.490	0.757	0.085	0.4/0	0.913	0.910
Σ	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Data Set S6: Summary of geochronological data from the Sava Zone used for constraining its thermal evolution. The data are separated into a footwall (*italics*) and hangingwall unit with respect to the Motajica detachment. All data except those indicated by superscripts were derived in this study. Compare with Figure 15 in the main manuscript.

sample	tectonic unit	lithology	method	age (Ma)	2σ error (Ma)	Tc (°C)	Tc err (°C)
			footwall	units			
UK04-04	М	granite	ap FT	15.2	2.2	85	25
UK06-06	M	granite	ap FT	16.5	2.4	85	25
UK04-03	M	granite	ap FT	14.7	1.6	85	25
UK04-04	M	granite	zr FT	16.7	2.4	250	50
UK04-06	М	granite	zr FT	16.3	2.2	250	50
UK04-02	Р	orthogneiss	ap FT	16.8	2.4	85	25
UK04-02	Р	orthogneiss	zr FT	21.0	2.0	250	50
UK06-58	Р	Cc marble	Ar-Ar WM	25.0	1.5	350	25
UK04-04	М	granite	U-Pb Mz	26.6	0.2	725	50
UK04-04	M	granite	U-Pb Zr	26.7	0.0	900	50
$Pamic^{l}$	М	granite	K-Ar Bi	18.1	0.6	300	20
$VIG-1^2$	SD	metapelite	K-Ar Bi	32.5	11.0	300	20
$VIG-1^2$	SD	metapelite	K-Ar Hbl	46.0	3.5	495	50
M129	М	amphibolite	Ar-Ar Hbl	53.4	5.1	495	50
M120a	М	amphibolite	Ar-Ar Hbl	58.5	6.0	495	50
UK06-113 ³	М	metapelite	EMPA Mz	61.0	15.0	585	90
UK06-117 ³	М	metapelite	EMPA Mz	59.0	13.0	585	90
$M121^3$	M	metapelite	EMPA Mz	64.0	12.0	585	90
			hangingwa	all units			
UK05-09	М	sandstone	ap FT	38.6	6.4	85	25
M107	М	sandstone	ap FT	27.1	4.2	85	25
M123	М	sandstone	ap FT	37.3	4.2	85	25
UK06-02	K	sandstone	ap FT	28.5	5.8	85	25
K149	Κ	dolerite	zr FT	56.4	6.8	250	50
K146	Κ	granite	zr FT	57.3	5.4	250	50
K150	Κ	rhyolite	zr FT	61.2	7.4	250	50
UK06-34	K	rhyolite	U-Pb Zr	81.6	0.1	900	50
K149	K	dolerite	U-Pb Zr	81.4	0.1	900	50
key:				references:			
17	IZ			1	Τ	1 1000	

K	Kozara	1	Lanphere et al., 1988
М	Motajica	2	Lanphere and Pamić, 1992
Р	Prosara	3	Krenn et al., 2008
SD	Sava depression		

Tc closure temperature

Tc err ,,error" on the closure temperature; represents the range of closure temperatures around a ,,central" value, defined in field Tc.